Continuum centroid classifier for functional data

نویسندگان

چکیده

For the binary classification of functional data, we propose continuum centroid classifier (CCC), which is constructed by projecting data onto one specific direction. This direction obtained via bridging regression and classification. Our technique neither unsupervised nor fully supervised; instead, control extent supervision. Thanks to intrinsic infinite dimension two subtypes CCC enjoys an (asymptotic) zero misclassification rate. approach includes effective algorithm that yields a consistent empirical classifier. Simulation studies demonstrate competitive performance in different scenarios. Finally, apply real examples. Pour la binaire de données fonctionnelles, les auteurs proposent le classificateur au du centroïde (CCC) qui est construit en projetant fonctionnelles sur une spécifique obtenue faisant relais entre régression et La des n'est ni entièrement supervisée, non puisqu'ils contrôlent l'ampleur Grâce à intrinsèque infinie l'un deux sous-types présente un taux (aymptotique) nul mauvaise Les décrivent algorithme efficace donne empirique convergent. Ils démontrent par simulations que offre performances compétitives sous différents scénarios. Finalement, ils appliquent exemples réels.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boosting nearest shrunken centroid classifier for microarray data

Nearest shrunken centroid classifier (NSC) is a class of linear classifiers with built-in feature selections, and has proven useful for analyzing microarray data. The simple linear structure of the classification boundary makes NSC easy to interpret and implement, but sometimes this simple structure might fail to generalize well for some data. In this paper we propose boosting NSC to improve it...

متن کامل

Weight Adjustment Schemes for a Centroid Based Classifier Weight Adjustment Schemes for a Centroid Based Classifier Weight Adjustment Schemes for a Centroid Based Classifier *

In recent years we have seen a tremendous growth in the volume of text documents available on the Internet, digital libraries, news sources, and company-wide intra-nets. Automatic text categorization, which is the task of assigning text documents to pre-specified classes (topics or themes) of documents, is an important task that can help both in organizing as well as in finding information on t...

متن کامل

An improved centroid classifier for text categorization

In the context of text categorization, Centroid Classifier has proved to be a simple and yet efficient method. However, it often suffers from the inductive bias or model misfit incurred by its assumption. In order to address this issue, we propose a novel batch-updated approach to enhance the performance of Centroid Classifier. The main idea behind this method is to take advantage of training e...

متن کامل

Improved centroids estimation for the nearest shrunken centroid classifier

MOTIVATION The nearest shrunken centroid (NSC) method has been successfully applied in many DNA-microarray classification problems. The NSC uses 'shrunken' centroids as prototypes for each class and identifies subsets of genes that best characterize each class. Classification is then made to the nearest (shrunken) centroid. The NSC is very easy to implement and very easy to interpret, however, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Canadian journal of statistics

سال: 2021

ISSN: ['0319-5724', '1708-945X']

DOI: https://doi.org/10.1002/cjs.11624